cg
diff grant.txt @ 100:fa7c0a924e7a
.
author | bshanks@bshanks.dyndns.org |
---|---|
date | Wed Apr 22 06:45:17 2009 -0700 (16 years ago) |
parents | a48955c639d4 |
children | 89815d210b5c |
line diff
1.1 --- a/grant.txt Wed Apr 22 06:43:51 2009 -0700
1.2 +++ b/grant.txt Wed Apr 22 06:45:17 2009 -0700
1.3 @@ -309,8 +309,9 @@
1.4
1.5 === Related work ===
1.6
1.7 -\cite{ng_anatomic_2009} describes the application of AGEA to the cortex. The paper describes interesting results on the structure of correlations between voxel gene expression profiles within a handful of cortical areas. However, this sort of analysis is not related to either of our aims, as it neither finds marker genes, nor does it suggest a cortical map based on gene expression data. Neither of the other components of AGEA can be applied to cortical areas; AGEA's Gene Finder cannot be used to find marker genes for the cortical areas; and AGEA's hierarchical clustering does not produce clusters corresponding to the cortical areas\footnote{In both cases, the cause is that pairwise correlations between the gene expression of voxels in different areas but the same layer are often stronger than pairwise correlations between the gene expression of voxels in different layers but the same area. Therefore, a pairwise voxel correlation clustering algorithm will tend to create clusters representing cortical layers, not areas (there may be clusters which presumably correspond to the intersection of a layer and an area, but since one area will have many layer-area intersection clusters, further work is needed to make sense of these). The reason that Gene Finder cannot the find marker genes for cortical areas is that, although the user chooses a seed voxel, Gene Finder chooses the ROI for which genes will be found, and it creates that ROI by (pairwise voxel correlation) clustering around the seed.}.
1.8 -
1.9 +\cite{ng_anatomic_2009} describes the application of AGEA to the cortex. The paper describes interesting results on the structure of correlations between voxel gene expression profiles within a handful of cortical areas. However, this sort of analysis is not related to either of our aims, as it neither finds marker genes, nor does it suggest a cortical map based on gene expression data. Neither of the other components of AGEA can be applied to cortical areas; AGEA's Gene Finder cannot be used to find marker genes for the cortical areas; and AGEA's hierarchical clustering does not produce clusters corresponding to the cortical areas\footnote{In both cases, the cause is that pairwise correlations between the gene expression of voxels in different areas but the same layer are often stronger than pairwise correlations between the gene expression of voxels in different layers but the same area. Therefore, a pairwise voxel correlation clustering algorithm will tend to create clusters representing cortical layers, not areas.}.
1.10 +
1.11 +%% (there may be clusters which presumably correspond to the intersection of a layer and an area, but since one area will have many layer-area intersection clusters, further work is needed to make sense of these). The reason that Gene Finder cannot the find marker genes for cortical areas is that, although the user chooses a seed voxel, Gene Finder chooses the ROI for which genes will be found, and it creates that ROI by (pairwise voxel correlation) clustering around the seed.
1.12
1.13 %% Most of the projects which have been discussed have been done by the same groups that develop the public datasets. Although these projects make their algorithms available for use on their own website, none of them have released an open-source software toolkit; instead, users are restricted to using the provided algorithms only on their own dataset.
1.14