cg

diff grant.txt @ 41:34e681823d3a

.
author bshanks@bshanks.dyndns.org
date Tue Apr 14 02:53:00 2009 -0700 (16 years ago)
parents cb2ac88dd526
children 282ba15dcfbe
line diff
1.1 --- a/grant.txt Tue Apr 14 02:50:49 2009 -0700 1.2 +++ b/grant.txt Tue Apr 14 02:53:00 2009 -0700 1.3 @@ -242,17 +242,17 @@ 1.4 1.5 One might say that gradient similarity attempts to measure how much the border of the area of gene expression and the border of the target region overlap. However, since gene expression falls off continuously rather than jumping from its maximum value to zero, the spatial pattern of a gene's expression often does not have a discrete border. Therefore, instead of looking for a discrete border, we look for large gradients. Gradient similarity is a symmetric function over two images (i.e. two scalar fields). It is is high to the extent that matching pixels which have large values and large gradients also have gradients which are oriented in a similar direction. The formula is: 1.6 1.7 +\begin{align*} 1.8 \sum_{pixel \in pixels} cos(abs(\angle \nabla_1 - \angle \nabla_2)) \cdot \frac{\vert \nabla_1 \vert + \vert \nabla_2 \vert}{2} \cdot \frac{pixel\_value_1 + pixel\_value_2}{2} 1.9 - 1.10 -where $\nabla_1$ and $\nabla_2$ are the gradient vectors of the two images at the current pixel; $\angle \nabla_i$ is the angle of the gradient of image $i$ at the current pixel; $\vert \nabla_1 \vert$ is the magnitude of the gradient of image $i$ at the current pixel; and $pixel_value_i$ is the value of the current pixel in image $i$. 1.11 +\end{align*} 1.12 + 1.13 +where $\nabla_1$ and $\nabla_2$ are the gradient vectors of the two images at the current pixel; $\angle \nabla_i$ is the angle of the gradient of image $i$ at the current pixel; $\vert \nabla_i \vert$ is the magnitude of the gradient of image $i$ at the current pixel; and $pixel\_value_i$ is the value of the current pixel in image $i$. 1.14 1.15 The intuition is that we want to see if the borders of the pattern in the two images are similar; if the borders are similar, then both images will have corresponding pixels with large gradients (because this is a border) which are oriented in a similar direction (because the borders are similar). 1.16 1.17 \vspace{0.3cm}**Geometric and pointwise scoring methods provide complementary information** 1.18 1.19 - 1.20 - 1.21 -To show that local geometry can provide useful information that cannot be detected via pointwise analyses, consider Fig. \ref{AUDgeometry}. The top row of Fig. \ref{AUDgeometry} displays the 3 genes which most match area AUD, according to a pointwise method\footnote{For each gene, a logistic regression in which the response variable was whether or not a surface pixel was within area AUD, and the predictor variable was the value of the expression of the gene underneath that pixel. The resulting scores were used to rank the genes in terms of how well they predict area AUD.}. The bottom row displays the 3 genes which most match AUD according to a method which considers local geometry\footnote{For each gene the gradient similarity (see section \ref{gradientSim}) between (a) a map of the expression of each gene on the cortical surface and (b) the shape of area AUD, was calculated, and this was used to rank the genes.} The pointwise method in the top row identifies genes which express more strongly in AUD than outside of it; its weakness is that this includes many areas which don't have a salient border matching the areal border. The geometric method identifies genes whose salient expression border seems to partially line up with the border of AUD; its weakness is that this includes genes which don't express over the entire area. Genes which have high rankings using both pointwise and border criteria, such as $Aph1a$ in the example, may be particularly good markers. None of these genes are, individually, a perfect marker for AUD; we deliberately chose a "difficult" area in order to better contrast pointwise with geometric methods. 1.22 +To show that gradient similarity can provide useful information that cannot be detected via pointwise analyses, consider Fig. \ref{AUDgeometry}. The top row of Fig. \ref{AUDgeometry} displays the 3 genes which most match area AUD, according to a pointwise method\footnote{For each gene, a logistic regression in which the response variable was whether or not a surface pixel was within area AUD, and the predictor variable was the value of the expression of the gene underneath that pixel. The resulting scores were used to rank the genes in terms of how well they predict area AUD.}. The bottom row displays the 3 genes which most match AUD according to a method which considers local geometry\footnote{For each gene the gradient similarity (see section \ref{gradientSim}) between (a) a map of the expression of each gene on the cortical surface and (b) the shape of area AUD, was calculated, and this was used to rank the genes.} The pointwise method in the top row identifies genes which express more strongly in AUD than outside of it; its weakness is that this includes many areas which don't have a salient border matching the areal border. The geometric method identifies genes whose salient expression border seems to partially line up with the border of AUD; its weakness is that this includes genes which don't express over the entire area. Genes which have high rankings using both pointwise and border criteria, such as $Aph1a$ in the example, may be particularly good markers. None of these genes are, individually, a perfect marker for AUD; we deliberately chose a "difficult" area in order to better contrast pointwise with geometric methods. 1.23 1.24 1.25 \begin{figure}\label{AUDgeometry}